Highly efficient nitrobenzene photoreduction over the amino acid-modified CdS-TiO2 nanostructures under visible light
نویسندگان
چکیده مقاله:
CdS-coupled TiO2 nanocrystals were prepared by the microemulsion-mediated solvothermal method at pretty low temperatures. The semiconductor nanocrystals were modified with tyrosine, phenyl alanine, glysine and glutamate aminoacids and then were characterized by BET, SEM, EDX, XRD, UV–Vis spectroscopy, and FTIR analysis methods. The specific surface area and the average pore diameter were found to be about 470 m2 g−1 and 2.8 nm, respectively. Moreover, the average size of the CdS-TiO2 particles was evaluated to be 28 nm. The results showed that the modification process with the aminoacids improves the adsorption capability and photoactivity of the samples. Among them, tyrosine was determined to be the best choice. According to the results, modification of CdS-TiO2 heterojunction photocatalyst with electron-donating groups is an efficient strategy to increase the photoreduction of nitroaromatic compounds. Reusability experiments were also carried out and confirmed the high capacity of the prepared samples for the photoconversion of nitrobenzene after being repeated for four times.
منابع مشابه
Highly-efficient cocatalyst-free H2-evolution over silica-supported CdS nanoparticle photocatalysts under visible light.
A silica-supported CdS nanoparticle photocatalyst exhibits excellent visible-light driven H2 evolution activity without the use of a cocatalyst. The apparent quantum yield can reach 42% under 420 nm light illumination.
متن کاملA novel Ru/TiO2 hybrid nanocomposite catalyzed photoreduction of CO2 to methanol under visible light.
A novel in situ synthesized Ru(bpy)3/TiO2 hybrid nanocomposite is developed for the photoreduction of CO2 into methanol under visible light irradiation. The prepared composite was characterized by means of SEM, TEM, XRD, DT-TGA, XPS, UV-Vis and FT-IR techniques. The photocatalytic activity of the synthesized hybrid catalyst was tested for the photoreduction of CO2 under visible light using trie...
متن کاملAsymmetric zinc porphyrin-sensitized nanosized TiO2 for efficient visible-light-driven CO2 photoreduction to CO/CH4.
Asymmetric zinc porphyrin (ZnPy) was synthesized and used to sensitize nanosized TiO2. The visible-light-driven activity of CO2 photoreduction to generate CO/CH4 in the gas phase was observed from the ZnPy-sensitized TiO2 without loading noble metal, and the mechanism was discussed.
متن کاملHighly efficient synthesis of tetrahydrobenzo[b]pyrans under visible light promoted by cesium carbonate
Multi-component coupling reaction (MCR) is a powerful synthetic tool for the synthesis of biologically active compounds. Development of such multi-component coupling reaction strategies in visible light has been of considerable interest, as they provide simple and rapid access to a large number of organic molecules through a sustainable path. An efficient and green protocol for the synthesis of...
متن کاملNitrogen doped TiO2 for efficient visible light photocatalytic dye degradation
In this study, Nitrogen doped TiO2 photocatalysts were prepared by the sol gel method and physicochemical properties were characterized by X-ray diffraction (XRD), and scanning electron microscopy (SEM), photoluminescence, and energy dispersive X-ray spectroscopy (DRS) techniques. The XRD data indicated that the nanoparticles had the same crystals structures as the pure TiO2</su...
متن کاملComparison of Photocatalytic Activities of Two Different Dyes Using Pt-Modified TiO2 Nanoparticles under Visible Light
The photocatalytic degradation of Acid Red 91 (AR91) and Acid Yellow 23 (AY23) with different molecular structures and different substitute groups using Pt modified TiO2 (PtTiO2 ) nanoparticles was investigated in the presence of visible light irradiation. Pt-TiO2 nanoparticles were prepared with photodiposition method (PD) and characterized by X-ray diffraction (XRD), scanning electron microgr...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 2 شماره 1
صفحات 109- 119
تاریخ انتشار 2017-01-01
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023